Rigidity for Infinitely Renormalizable Area-preserving Maps

نویسندگان

  • D. GAIDASHEV
  • T. JOHNSON
  • M. MARTENS
چکیده

The period doubling Cantor sets of strongly dissipative Hénon-like maps with different average Jacobian are not smoothly conjugated. The Jacobian Rigidity Conjecture says that the period doubling Cantor sets of two-dimensional Hénon-like maps with the same average Jacobian are smoothly conjugated. This conjecture is true for average Jacobian zero, e.g. the onedimensional case. The other extreme case is when the maps preserve area, e.g. the average Jacobian is one. Indeed, the period doubling Cantor set of area-preserving maps in the universality class of the Eckmann-Koch-Wittwer renormalization fixed point are smoothly conjugated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of the Universal Area-preserving Map Associated with Period Doubling: Stable Sets

It is known that the famous Feigenbaum-Coullet-Tresser period doubling universality has a counterpart for area-preserving maps of R. A renormalization approach has been used in (Eckmann et al 1982) and (Eckmann et al 1984) in a computer-assisted proof of existence of a “universal” areapreserving map F∗ — a map with orbits of all binary periods 2 , k ∈ N. In this paper, we consider infinitely re...

متن کامل

Topological Obstructions to Smoothness for Infinitely Renormalizable Maps of the Disk

We analyze the signature type of a cascade of periodic orbits associated to period doubling renormalizable maps of the two dimensional disk. The signature is a sequence of rational numbers which describes how periodic orbits turn each other and is invariant by topological conjugacies that preserve orientation. We prove that in the class of area contracting maps the signature cannot be a monoton...

متن کامل

Physical Measures for Infinitely Renormalizable Lorenz Maps

A physical measure on the attractor of a system describes the statistical behavior of typical orbits. An example occurs in unimodal dynamics. Namely, all infinitely renormalizable unimodal maps have a physical measure. For Lorenz dynamics, even in the simple case of infinitely renormalizable systems, the existence of physical measures is more delicate. In this article we construct examples of i...

متن کامل

Dynamics of Quadratic Polynomials. Ii. Rigidity.

This is a continuation of the series of notes on the dynamics of quadratic polynomials. The first part of this series [L3] will be systematically used for the reference. In particular we will assume that the reader is familiar with the background outlined in §2 of Part I: quadratic-like maps, straightening, combinatorial classes, external rays, the Mandelbrot set M , secondary limbs, puzzle, et...

متن کامل

Topology of the regular part for infinitely renormalizable quadratic polynomials

In this paper we describe the well studied process of renormalization of quadratic polynomials from the point of view of their natural extensions. In particular, we describe the topology of the inverse limit of infinitely renormalizable quadratic polynomials and prove that when they satisfy a-priori bounds, the topology is rigid modulo its combinatorics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014